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STEADY-STATE RESPONSE OF A FINITE BEAM ON A
PASTERNAK-TYPE FOUNDATION

MIRCEA RADE~

Polytechnic Institute, Bucharest, Romania

Abstract-A uniform Bernoulli-Euler beam of finite length is supported by a Pasternak-type foundation and
subjected to a harmonic force F = Fo ei"", concentrated at the midpoint. The influence of the "shear layer"
is exhibited by comparison with the response of a beam supported by a Winkler-type foundation. At the first
resonant frequency, unbounded values occur for the bending moment, which are not expected according to
Winkler's hypothesis. Observations are made on the influence ofdamping and inertia of the foundation. Analytical
expressions as well as frequency-response curves are presented for the beam deflections and the bending moments.
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cross sectional area of the beam
notations according to equation (27), (27'), (28) and (28')
integration constants

dynamic modulus of elasticity of beam material
exciting concentrated force
shear foundation modulus
moment of inertia of the cross-section of the beam
bending moment
total shear force (beam +foundation)
concentrated foundation pressure
shear force in beam
notations (see Table I)
foundation characteristic, notation according to equation (15)
dimensionless coordinate
damping factors
abbreviation according to equation (8)
mass density of the beam material
forcing frequency
dimensionless frequency
Cauchy-type functions
notation according to equation (51)
= J(-I)
Winkler's foundation modulus
half-length of the beam
notations according to equations (6) and (7)
restoring force from the foundation
beam deflections
deflections of the free surface of the foundation
time
position along beam and/or foundation
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1. INTRODUCTION
THE dynamic response of beams continuously supported by deformable media is of
interest in many fields of engineering. The steady-state response problem is most fre­
quently encountered in practical problems concerning vibration isolation, using carpets
and layers of high polymers or rubber-like materials.

Usually, the subgrade is replaced either by a Winkler-type elastic foundation [1],
or by an isotropic semi-infinite elastic continuum [2]. However, it was shown by Kerr [3]
and Soldini [4] that the behaviour of a large class of foundation materials occurring in
practice cannot be described by such models. Thus, one often resorts to the so called
"approximation of second order" of the restoring force from the foundation [5], namely,
to "generalized" foundations, characterized by two moduli [6--8]. The basic assumption
is that the foundation reaction at any point has two components; one is proportional
to the beam deflection at that point, the other to the curvature of the deflection surface of
the subgrade (the latter component entering with a negative sign). The mechanical impli­
cation of this hypothesis is that the supporting medium can be replaced by a set of vertical
parallel linear springs, which are not independent as for the Winkler model, but have
the ends connected by a "shear layer" (Fig. 1), i.e. a beam consisting of incompressible
vertical elements, which deform only by transverse shear (Pasternak foundation [7]).
Similar behaviour is exhibited by the Wieghardt-type foundation [9] as was recently shown
by Ylinen [10] and Capurso [11].

Free vibrations of a Timoshenko beam on a Pasternak foundation have been studied
by Menditto [12]. In the present paper, a comparative analysis of the steady-state response
of a beam resting on a Pasternak-type and on a Winkler-type foundation is presented.
It is shown that the influence of the "shear layer" is most pronounced over the range of
low forcing frequencies, where-for the bending moments- the character of the responses
is completely different, so that Winkler's hypothesis-the common approach of the
problem-leads to great errors just in the frequency range of practical interest.

Freudenthal and Lorsch [13]-for static problems, and Kenney [14], Mathews [15],
Achenbach and Sun [16]-for dynamic problems, have introduced linear viscoelastic
foundation models, replacing the springs from Winkler's foundation by viscoelastic
elements. Kerr [3] proposed some Pasternak-type viscoelastic foundations.

2. EQUATION OF MOTION

The differential equation of the transverse vibration of a flexibly supported Bernoulli­
Euler beam, with constant cross-sectional area A, moment of inertia I, Young's modulus E
and mass density Q is

84 y 82y
EI 8x4 +QAatY = f(x, t)-q(x, t) (1)

where y is the beam deflection at section x and time t,f(x, t) is the impressed force distri­
bution, and q(x, t) is the restoring force from the foundation.

The parameters of the Pasternak foundation are the spring constant k and the shear
foundation modulus Go, so that

82 y
q(x, t) = ky-Go8x2 ' (2)

Permanent and smooth contact between beam and foundation is assumed.
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Consideringf(x, t) = 0 (for free of load intervals), equation (1) and (2) yield

04y 02y 02 y
EI ox4 -Go ox2 +ky+gA ot2 = O. (1a)

Assuming a steady-state solution

y(x, t) = v(x) dID!,

where (J) is the forced frequency, and introducing the dimensionless coordinate

where 1is the half-length of the beam, equation (la) can be written as

d4 v d2v
d~4 -4m

2
d~2 +4n

4
v = 0

where

= (Go12 )t
m 4EI

n = v(1_Q2)t,

in which

v = (~4It
and Q is the dimensionless forced frequency defined as

Q= co
COo

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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where Wo is the bouncing frequency of the rigid beam on a Winkler foundation

(10)

The general solution of the homogeneous equation (5) can be written in the form

(11)

where C1, ... ,C4 are integration constants (initial parameters) and <pim are Cauchy­
type functions, whose expression depends on the relative values of the quantities m and n

(see Table 1). For ~ = 0, together with their first three derivatives, these functions form
a unit matrix

<P1(0) = 1 <P2(0) = 0 <P3(0) = 0 <P4(0) = 0

<P'1(0) = 0 <P2(0) = 1 <p~(0) = 0 <p~(0) = 0

<P'1(0) = 0 <p~(0) = 0 <P3(0) = 1 <p~(0) = 0
(12)

<p';'(O) = 0 <p'{(0) = 0 <P'3(0) = 0 <p~(0) = 1

In Table 1, the first five cases refer to the problem of a beam on a Pasternak foundation
and the last three ones to that of the beam on a Winkler foundation. In the last column
of the table substitutions are given with whose help the corresponding functions <pim
can be deduced from those of a previous case.

For the unloaded surface of the foundation, outside a finite beam, we have q(x, t) = 0,
and from (2) the equation of motion of the free surface then reduces to

a2 y
Go ax! -kYf = 0, (13)

where Yf is the foundation deflection.
Making use of notations similar to (3) and (4), (13) becomes

d2vf 2
d~2 -y Vf = 0

in which

= (k12

) t
Y Go·

The general solution of equation (14) is

vfm = Cs eY~+C6 e-Y~,

where Csand C6 are integration constants.

(14)

(15)

(16)

3. FREE-FREE BEAM WITH A CONCENTRATED FORCE AT THE
MIDPOINT

Let us consider a uniform finite beam, supported by a Pasternak foundation and with
a sinusoidally varying force F = F 0 eiwt concentrated at the middle point (Fig. 2). The
origin of the coordinates is taken at the driving point. Because of symmetry, only the right
side of the beam is considered. The boundary conditions are that at the origin the slope



TABLE I.

Case Notation cPl(~) CP2W cPJ( ~) cP4W Substitution
CIl

1 1 (J1
2 1 1 (1 "A= (m 2+ n2)! + (m2_ n2)! '"m > 0, -2~-2 (J12 cosh A~ ~~ -sinhA~ ~(coshJ1~ ~~ -sinhJ1~ Co

J1 -A J12 _..1.2 A J1 -A J12- A2 J1 ~

n4 > 0,

..1.
2

) -~ sinh A~)
~

J1 = (m2+n2)t _ (m2_ n2)t - Ie2 cosh J1~) -cosh A~) "m>n -~sinhJ1~ ..,
'"'"'"0::s
'"'"0...,

1 '"3f32 - rx2 ::s>
II m > 0, rx = (m2+n2)! cosh rx~ cos f3~ 2 2 cosh rx~ sin f3~ 2rxf3(rx2 + p2) in I

::s
2P(rx +P) ~.

n4 > 0,
rx2_f32 (rx cosh rx~ sin f3~ ..1.= rx+jP g"

2rxp 3rx2 _ p2 1 '"3
m < n, P = (n 2_m2)t + 2 2 sinh rx~ cos f3~ - sinh rx~ sin f3~ - f3 sinh rx~ cos f3~) J1=rx-jf3 0

sinh rx~ sin f3~
2rx(rx +P) 2rxp ::s

'"."
'"*9'"':'"

cosh 1jJ~ - 1jJ2~ sinh 1jJ~
1 1 . 1 ~

III m > 0, IjJ = J(2)m -(3 sinh 1jJ~-IjJ~cosh 1jJ~) -~smhljJ~ -3(1jJ~ cosh 1jJ~ in II 'R
n4 > 0,

21jJ 21jJ 21jJ
rx=1jJ 0'c:

-sinh 1jJ~) f3=0 ::s
m=n Co

~o·
::s

in I
1 ~(~sinh2m~-~) A = 2mIV m > 0, 1 ~ -2 (cosh 2m~ -1)

n=O 4m 4m 2m J1 = 0

-.)
.j:.
w



v m > 0, X= [2m2+2(m4 + ij4)t)t

n4 < 0 fi = [- 2m2+2(m4 + ij4)t)t

- - ,)2(1 +j)nn - 2

1
fi2 +Xi(fi2 cosh X~

+,P cosfi~)

TABLE I-continued

1 (-2
fi2 + X2 !LX sinh X~

X2
+/1 sin fi~)

1
fi2 +X2(cosh X~

-cos fi~)

I (1
fi2 + X2 l sinh X~

-~ sin fi~)

in I

A=X

!L = jfi

t

1 .
~sinh n~ . sin n~

1 ::VI m = 0, cosh n~ cos n~ -(cosh n~ . sm n~ -3(cosh n~ . sin n~ in II
2n 2n 4n iii

&J
n4 > 0 + sinh n~ . cos n~) - sinh n~ cos n~) rx=f3=n )0-

;:1:1
)0-
0m
'"

e = ,)(2)ij
I

~(sinh e~ + sin e~)
1 I

VII m = 0, :2(cosh e~ +cos e~) 2(cosh e~ -cos e~) )(sinh e~ - sin e~) in V
2e 2e 2e

n4 < 0 X=fi=e

VIII m = 0,

n=O

~ !~2 ie'
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of the deflection curve is zero and the total shear force is one-half the concentrated load
amplitude

[
dVJ - 0de ~=o -

EI{[d
3

VJ 2[dVJ}Q(O) = -73 de3 ~=o -4m de ~=o =

(17)

(18)

At the free end of the beam, the bending moment vanishes, the deflection of the beam
equals the deflection of the free surface of the foundation, and the total shear force equals
the concentrated foundation pressure

M(I) = - ~:[~;~l=l = 0

v(l) = vf (l)

EI{[d
3

VJ 2[dVJ} Go [dVfJ
Q(I) = -73 d~3 ~=l -4m d~ ~=l = -Ri1) = I dZ ~=l'

At infinity, the deflection of the free surface of the foundation must vanish

(19)

(20)

(21)

(22)

The six conditions (17H22) permit the determination of the integration constants from
equations (11) and (16). The expressions of the deflection, the slope of the deflection curve,

x

y

FIG. 2.

the bending moment and the shear force of the beam are the following

Fol3

v(~) = - 2EI[BlcPlm+B3cP3(~)-cP4m]

FF
q>(e) = - 2~I [BlcP'lm+B3cP3(e)-cP~(m

M(~) = F;I[BlcP~(~)+B3cP;m-cP~(m

F
T(e) = 2

0
[B1cP'l'(~) + B3cP'3(~) - cP4(e)] ,

(23)

(24)

(25)

(26)
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(27)

(28)

in which primes denote derivatives with respect to ~, and

B _ <P'3<P'4 -<p~<p'; -4m2[<p'3<p~ -<P~<P3 +Y(<P'3<P4 -<P~<P3)J

1 - <P'3<P'; - <P'; <P'; -4m2[<p'3<p~ - <p~ <P3 +Y(<P'3<P1 - <p~ <P3)J

B _ <p~<p';'-<p~<p'4-4m2[<p~<p'1-<P~<P~+Y(<P~<P1-<P~<P4)J

3 - <P'3<p';-<p~<p';-4m2[<p'3<p~ -<P~<P3+Y(<P'3<P1-<p~<P3)r

where for the sake of brevity the notation <Pi = <p;(I) has been used.
In the following we shall limit ourselves to find the expressions for the beam deflection

and the bending moment at the midpoint.

3.1 Solutions for the deflection at the midpoint

From equation (23) it follows that the deflection at the middle of the beam is

Fo/3

Vo = v(O) = - 2EI B1· (29)

For each of the cases mentioned in Table 1, the expressions of Vo are given below (the
corresponding notations are listed in the second column of the table).

Case 1. m > 0, n4 > 0, m > n:

Afl[(fl4 + A4)cosh Acosh fl- flA(fl2 + A2)sinh Asinh fl- 2fl2A2J
Fo/3 - Y(fl4 - A4)(A cosh Asinh fl- fl sinh Acosh fl)

Vo = - 2EI A2fl2(fl2 - A2)(A3 cosh Asinh fl- fl3 sinh Acosh fl) (30)
- YAfl(fl2 + A2)(fl2 - A2)2 cosh Acosh fl

Case II. m > 0, n4 > 0, m < n:

(rx2+ p2)[P2(P2 _ 3rx2)sinh2 rx _ rx2(rx2_ 3p2)sin2p -4rx2P2J
FoP - y2rxP(rx2- P2)(P sinh 2rx - rx sin 2P)

Vo = 2EI rxP(rx2+ P2)2[P(P2 - 3rx2)sinh 2rx + rx(rx2- 3p2)sin 2PJ
- y8rx2P2(rx4- P4)(cosh2 rx- sin2 p)

Case III. m > 0, n4 > 0, m = n:

Fo/3 t/J(3 sinh2 t/J + t/J2 +4) + 2y(sinh 2t/J - 2t/J)
Vo = 2EI t/J3[t/J(3sinh2t/J-2t/J)+8ycosh2 t/JJ .

Case I V. m > 0, n = 0:

FoP 2m+y(2m-tanh 2m)
Vo = - -----=----

2EI 8ym3

Case V. m > 0, n4 < 0:

Ajl[(jl4 + A4)cosh Acos jl + jlA(A2- jl2)sinh Asin jl + 2jl2A2J
Fo/3 - y(jl4 - A4)(X cosh Asin p. - jl sinh Acos jl)

V
o = - 2EI fl2A2(fl2 +A2)(A3cosh Asin fl+fl3sinh Acos fl)

- yAP.(A2- p.2)(jl2 + A2)2 cosh Acos jl

(31 )

(32)

(33)

(34)
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Case VI. m = 0,n4 > 0:

Fol3 cosh 2n+cos 2n+2
Vo = 2EI 4n 3(sinh 2n + sin 2n)'

Case VII. m = 0, n4 < 0:

Fol3 cosh ecos e+ 1
vo = --

2EI e3(cosh e sin e+ sinh e cos e)'
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(35)

(36)

(37)

(38)

Substituting n = v(Q = 0) in equation (35), we obtain the static deflection at the middle
of a beam lying on a Winkler-type foundation.

* _ Fol 3 cosh2v+cos2v+2
Vo - 2EI 4v3(sinh 2v+sin 2v)"

3.2 Solutions for the bending moment at the midpoint

From equation (25) it is seen that the bending moment at the middle of the beam is

Fol
M o = M(O) = TB3'

For each of the cases considered in Table 1, the corresponding expressions of M 0

are the following:

Case I. m > 0, n4 > 0, m > n:

jlA.[(jl4 + A.4) sinh A. sinh jl+jlA.(jl2 +A.2)(I-cosh jl cosh A.)]
M 0 = _ Fol - Y(jl4 - A.4)(A. sinh A. cosh jl- jl cosh A. sinh jl) (39)

2 jlA.(jl2 - A.2)(A. 3 sinh jl cosh A. - jl3 sinh A. cosh jl)
- y{jl2 + A.2)(jl2 _).2)2 cosh jl cosh ),

Case II. m > 0, n4 > 0, m < n:

(a2+ (J2)[(J2(fF - 3(2)sinh2 a + a2(a2- 3(J2)sin2 (J]
Fol -y. 2a(J(a2_(J2)«(J sinh 2a+a sin2p)

T a(J(a2+ (J2)[(J«(J2 - 3(2)sinh 2a + a(a2- 3(J2)sin 2(J]
-y8a2(J2(a2-(J2)(cosh2 a-sin2 (J)

Case I II. m > 0, n4 > 0, m = n:

Fol tjJ(l/J2-3 sinh2 l/J)-2y(sinh 2l/J+2l/J)
M o =-- ------

2 l/J2(2l/J - 3 sinh 2l/J) - y8l/J cosh2 l/J

Case IV. m > 0, n = 0:

Fol tanh 2m
M o = T 2m

Case V. m > 0, n4 < 0:

1.it[(jl4 + X4 )sinh 1 sin .it + .it1(.F - .it2)(1- cosh 1cos .it)]
Fol + y(.it4- 14 )(1 sinh A: cos.it +.it cosh A: sin.it)

T 1jl(.it2+ 12)(13 sin.it cosh 1+.it3sinh 1 cos.it)
+ y(jl2 _ A:2)(.it2+ A:2)2 cosh 1cos .it

(40)

(41)

(42)

(43)



748

Case V I" m = 0, n4 > 0:

Case VII. m = 0, n4 < 0:

Case VIII. m = 0, n = 0:

MIRCEA RADE~

Fol cosh 2n - cos 2n
Mo = 2 2n(sinh2n+sin2n)

Fol sinh s . sin s
2 s(cosh s sin s+sinh s. cos e)"

(44)

(45)

(46)

(47)

The static bending moment M~ at the middle of a beam resting on a Winkler-type
foundation can be obtained from equation (44), setting n v(Q = 0)

* _ Fol cosh 2v-cos 2v
Mo - 2 2v(sinh 2v+sin 2v)"

3.3 Frequency-response curves

In plotting the response curves, it is desirable to express the beam deflections and
the bending moments by dimensionless quantities, using as reference values the expressions
(37) and (47). Each of the relations (30H46) deduced above, permit the computation of
the response only inside a limited range offorcing frequencies, depending upon the relative
magnitude of the parameters m and v, as shown in Table 2.

In Fig. 3 and Fig. 4, the displacement and bending moment at the middle of the beam
are plotted as functions of Q, for v = J(2)/2, m = 0 (broken line) and m = 0·5 (solid line).

Concerning the displacement amplitudes (Fig. 3), for both foundation models, the
steady-state response of the spring-supported beam shows unbounded values in the
neighbourhood of the "rigid-body bouncing" frequency, and at frequencies corresponding
to the resonances ofan unsupported vibrating beam. The resonant frequencies of the beam
on a Pasternak foundation are higher than those of the beam lying on a Winkler founda­
tion, the shear layer having a stiffening effect (equivalent to that of an axial tensile force
in the beam). At high forcing frequencies the beam responses are similar for both supporting
foundations.

Regarding the bending moments in the beam (Fig. 4), the responses differ substantially,
especially in the vicinity of the "rigid-body bouncing frequency," where the Pasternak
foundation gives rise to an interesting resonance. This reveals an insufficiency of Winkler's
model. At the first resonant frequency, owing to the lack of an interaction between the
loaded and the free surface of the foundation, the beam moves with large vertical amplitude
but without bending much (like a rigid body), so that the dynamic amplification of the
bending moments is insignificant.

The unbounded growth of stresses in a beam on a Pasternak foundation at the
"bouncing frequency" is due to the introduction of the shear layer. The effect of the
foundation part situated outside the beam appears as two concentrated reactions at its
ends, having the same action as two elastic lumped supports ofconstant (yGoVl; practically,
it means a change in the boundary conditions which make boundless displacements to
be accompanied by boundless bending moments.
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v=0·7071
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--- m =0
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FIG. 3.

10

The response curves are plotted only for a restricted range of forcing frequencies.
For forcing frequencies higher than the third critical frequency, the simplified Bernoulli­
Euler beam model limits the applicability of the present method; a Timoshenko beam
must be introduced, and the foundation inertia cannot be neglected.

Attention must be paid to the following remark. While for low forcing frequencies,
the response of a beam supported by a Winkler foundation can be calculated accurately
by considering the beam to be completely rigid, in the case of a beam resting on a Pasternak
foundation, the influence ofthe shear layer and of the corresponding concentrated pressures
at the ends are dependent on the beam curvature, wherefrom it follows that the assump­
tion of rigidity could lead to errors. Indeed, from Fig. 5 one may see that the bending
moments in a rigid beam (broken line) are greater than in an elastic one (solid line).
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4. FREE-FREE BEAM LOADED AT THE MIDDLE BY A COUPLE

A couple.A = .A0 ejwt
, acting at the middle of the beam, induces antisymmetric vibra­

tions. Considering only the right side of a finite free-free beam and taking the origin of
coordinates at the midpoint, the boundary conditions (l9H22) are the same as for the
symmetric case. On the contrary, at the origin, the deflection is zero and the bending
moment is one-half the amplitude of the couple

[v]~=o = 0 (17')

(18')
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The expressions for deflection, slope of the deflection curve, bending moment and shear
force are the following

(23')

(24')

(25')

(26')

in which

(4J~4J3 - 4J'34J'4) - 4m2(4J~4J3 - 4J'34J4) - y4m2(4J~4J3 - 4J'34J4)
B2= (4J~4J'2 -4J'24J'4)-4m2(4J~4J~ -4J'24J4)-y4m2(4J~4J2 -4J'24J4) (27')

(4J'34J'2 - 4J'24J'3) - 4m2(4J'34J~ - 4J'24J3) - y4m2(4J'34J2 - 4J'24J3)
B4

= (4J~4J'2 - 4J'24J'4) - 4m2(4J~4J~ - 4J'24J4) - y4m2(4J~4J2 - 4J'24J4) (28')

where 4Ji = 4J.{1).
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5. PASTERNAK FOUNDATION MODEL INCLUDING INERTIA

753

(48)

At high exciting frequencies, a third term must be added to the expression of the
foundation reaction, namely, a component taking into account its inertia. This can be
accomplished by assuming a mass eoAo for each vertical element of the shear layer attached
to the ends of foundation springs.

Instead of equation (2) we introduce

82y iJ2 y
q(x, t) = ky Go iJx2 +eoAoatf.

For practical values of the forcing frequency (0 < C t ), the beam response can be calcu­
lated using the above deduced expressions, but introducing

instead of y, and

fI = v[l- (1 +002]*

instead of n. In (49) and (50) the following notation has been used

y = eoAo
\, eA'

6. PASTERNAK FOUNDATION INCLUDING DAMPING

(49)

(50)

(51)

Based on the Alfrey-Lee principle of correspondence [17] and according to Berry [18],
the solution of the viscoelastic problem for a steady-state harmonic excitation, can be
obtained directly from that of the corresponding elastic problem, by replacing the real
moduli and constants of elasticity by complex moduli, generally dependent on the fre­
quency. Thus, the steady-state response of a viscoelastic Pasternak foundation can be
described by "complex foundation moduli"

(52)

and
(53)

where k and Go are dynamic foundation moduli, l\ and 8G are damping factors of the
foundation. The response of a beam resting on a foundation of any viscoelastic material
can be computed using for each value of the forcing frequency the corresponding values
of k, Go, 8b 8G-experimentally obtained.

Introducing the complex Young's modulus of the beam material

the governing equation (5) becomes

E* E(1 +j,,), (54)

(55)
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where v(~) is a complex amplitude of the beam deflection, and

* _ (1 +jDG )
1

m -m--
1+jl]

(.

1+j 1~~2)t
n* = n

1+jl] ,

in which m and n are defined by equations (6) and (7).
Equation (14) becomes

in which

* (1 +jDk )
1

y = y 1+jD
G

'

(56)

(57)

(58)

(59)

where y results from equation (15).
The solution of the problem is also given by equations (30H46); this time Vo and Mo

are complex quantities, the absolute values of which must be calculated.
For example, in Case I (Table 1), in equations (30) and (39), f.1 and .Ie are to be replaced by

.Ie* = (m*2 + n*2)t +(m*2 _ n*2)1

f.1* = (m*2 +n*2)1 - (m*2 - n*2)1
(60)

and y by y* (59). The absolute values of Vo and M 0 can then be obtained by routine means.
Generally, the damping factor I] has a significant influence only over the first resonant

frequency of the unsupported beam, Dc-only in the vicinity of the "rigid-body bouncing"
and DG-in a wide range of intermediate and high frequencies.

In Fig. 6 are given response curves plotted only for the range of low forcing frequencies
and for different values of the damping factors. The deflections are normalized by division
by the static deflection at the middle of the beam supported by a Pasternak foundation.

7. CONCLUSIONS

The method of initial parameters seems to be a convenient means of analysis of steady­
state responses of beams on deformable subgrades.

At low forcing frequencies, the beam response is affected by introduction of the "shear
layer" in the Pasternak model, which brings forth an important resonance for the bending
moments in the vicinity of the bouncing frequency of the rigid beam. When the forcing
frequency grows, the effect of the shear layer diminishes and the response becomes similar
to that of the beam on a Winkler foundation.

The influence of linear foundation damping on the response is exhibited by introducing
complex foundation moduli, the solution being thus independent of the choice of a par­
ticular rheological model.
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AOCTpaKT-OOCTOllHHali 6aJIKa I>ePHYJIJIH-3ii.JIepa «!JOPMbI KOHe'lHOH AJIHHbI, olIepTali Ha OCHOBaHHH THlIa
OacTepHaKa lIo,o;BepraeTCli ,o;elkTBHIO rapMOHH'IeCKOH CHJIbI F = Fa elM, IIpHJIOlKeHHOH K cepe,o;HHHoli
TO'lKe. OOKa3aHO BJIHlIHHe "CJIOli c,o;BHra" IIO cpaBHeHHIO C IIOBe,o;eHHeM 6aJIKH, JIelKaU\eH Ha OCHOBaHHH.
THlIa BHHKJIepa. OpH lIepBOH '1aCTOTe pe30HaHca, IIOllBJIliIOTCli HeOrpaHH'IeHHble 3Ha'leHHlI MOMeHTa
H3rH6a, KOTopble He BCTpe'laIOTCli KaK 3TO IIpe,o;ycMaTpHBaeT TeopHli BHHKJIepa. Ha6JIIO,o;aeTCli BJIHlIHHe
,o;eMII«!JHpOBaHHlI H HHepllHH OCHOBaHHlI. ,lJ;aIOTcli TaK aHaJIHTH'IecKHe 3aBHCHMOCTH, KaK H KpHBble '1aCTOT
,o;JIli IIporH6oB 6aJIKH H MOMeHTOB H3rH6a.


